卷九 (2/2)
猪猪小说网 www.zhuzhu.la,元史无错无删减全文免费阅读!
十五,为法;(夏至前后半限以上者,减去半限,列于上位,下置半限,各百通日内分,先相减,后相乘,以七千七百除之,所得以加其法。)及除上位为分,分满十为寸,寸满十为尺,用加夏至地中晷影常数,为所求晷影定数。
求四方所在晷影
各于其处测冬夏二至晷数,乃相减之,余为其处二至晷差;亦以地中二至晷数相减,为地中二至晷差。其所求日在冬至后初限、夏至后末限者,如在半限以下,倍之;半限以上,覆减全限,余亦倍之;并入限日,三因,折半,以日为分,十分为寸,以减地中二至晷差,为法;置地中冬至晷影常数,以所求日地中晷影定数减之,余以其处二至晷差乘之,为实;实如法而一,所得,以减其处冬至晷数,即得其处其日晷影定数。所求日在夏至后初限、冬至后末限者,如在半限以下,倍之;半限以上,覆减全限,余亦倍之;并入限日,三因,四除,以日为分,十分为寸,以加地中二至晷差,为法;置所求日地中晷影定数,以地中夏至晷影常数减之,余以其处二至晷差乘之,为实;实如法而一,所得,以加其处夏至晷数,即得其处其日晷影定数。
二十四气陟降及日出分
(以下表格略)
二分前后陟降率
春分前三日,太阳入赤道内,秋分后三日,太阳出赤道外,故其陟降与他日不伦,今各别立数而用之。
惊蛰,十二日陟四。(六十七、一十六。)此为末率,于此用毕。(其减差亦止于此也。)
十三日陟四。(四十一、六。)十四日陟四。(三十八、九十。)
十五日陟四。
秋分,初日降四。(三十八。)一日降四。(二十九。) 二日降四。(五十九)。三日降四。(六十八。)
此为初率,始用之。(其加差亦始于此也。)
求每日日出入晨昏半昼分
各以陟降初率,陟减降加其气初日日出分,为一日下日出分;以增损差(仍加减加减差。)增损陟降率,驯积而加减之,即为每日日出分;覆减日法,余为日入分;以日出分减日入分,半之,为半昼分;以昏明分减日出分,为晨分;加日入分,为昏分。
求日出入辰刻
置日出入分,以六因之,满辰法而一,为辰数;不尽,刻法除之,为刻,不满为分。命子正算外,即得所求。
求昼夜刻
置日出分,十二乘之,刻法而一,为刻,不满为分,即为夜刻;覆减一百,余为昼刻及分秒。
求更点率
置晨分,四因之,退位,为更率;二因更率,退位,为点率。
求更点所在辰刻
置更点率,以所求更点数因之,又六因之,内加更筹刻,满辰法而一,为辰数;不尽,满刻法,除之,为刻数;不满,为分;命其日辰刻算外,即得所求。
求四方所在漏刻
各于所在下水漏,以定其处冬至或夏至夜刻,乃与五十刻相减,余为至差刻。置所求日黄道去赤道内外度及分,以至差刻乘之,进一位,如二百三十九而一,为刻;不尽,以刻法乘之,退除为分;内减外加五十刻,即得所求日夜刻;以减百刻,余为昼刻。(其日出入辰刻及更点差率等,并依前术求之。)
求黄道内外度
置日出之分,如日法四分之一以上,去之,余为外分;如日法四分之一以下,覆减之,余为内分。置内外分,千乘之,如内外法而一,为度,不满,退除为分秒,即为黄道去赤道内外度;内减外加象限,即得黄道去极度。
求距中度及更差度
置半法,以晨分减之,余为距中分;百乘之,如周法而一,为距中度;用减一百八十三度一十二分八十三秒半,余四因,退位,为每更差度。
求昏明五更中星
置距中度,以其日午中赤道日度加而命之,即昏中星所格宿次,因为初更中星;以更差度累加之,满赤道宿次,去之,即得逐更及明中星。
步月离术
转终分,一十四万四千一百一十,秒六千二十,微六十。
转终日,二十七,余二千九百,秒六千二十,微六十。
转中日,一十三,余四千六十五,秒三千一十,微三十。
朔差日,一,余五千一百四,秒三千九百七十九,微四十。
象策,七,余二千一,秒二千五百。
秒母,一万。
微母,一百。
上弦度,九十一,分三十一,秒四十一(太)。
望度,一百八十二,分六十二,秒八十三半。
下弦度,二百七十三,分九十四,秒二十五(少)。
月平行度,十三,分三十六,秒八十七半。
分秒母,一百。
七日初数,四千六百四十八,末数,五百八十二。
十四日初数,四千六十五,末数,一千一百六十五。
二十一日初数,三千四百八十三,末数,一千七百四十七。
二十八日初数,二千九百一。
求经朔弦望入转(凡称秒者,微从之,他仿此。)
置天正朔积分,以转终分及秒去之,不尽,如日法而一,为日,不满为余秒,即天正十一月经朔入转日及余秒;以象策累加之,去命如前,得弦望经日加时入转及余秒;径求次朔入转,即以朔差加之。(加减里差,即得中朔弦望入转及余秒。)
(以下表格略)
求中朔弦望入转朓朒定数
置入转小余,以其日算外损益率乘之,如日法而一,所得,以损益朓朒积,为定数。其四七日下余,如初数以下,初率乘之,如初数而一,以损益朓朒积,为定数;如初数以上,以初数减之,余乘末率,如末数而一,用减初率,余如朓朒积,为定数。其十四日下余,如初数以上,以初数减之,余乘末率,如末数而一,为朓朒定数。
求朔弦望中日
以寻斯干城为准,置相去地里,以四千三百五十九乘之,退位,万约为分,曰里差;以加减经朔弦望小余,满与不足,进退大余,即中朔弦望日及余。(以东加之,以西减之。)
求朔弦望定日
置中朔弦望小余,朓减朒加入气入转朓朒定数,满与不足,进退大余,命壬戌算外,各得定朔弦望日辰及余。定朔干名与后朔同者,其月大;不同者,其月小;月内无中气者,为闰。视定朔小余,秋分后在日法四分之三以上者,进一日;春分后,定朔日出分与春分日出分相减之,余者,三约之,用减四分之三;定朔小余及此分以上者,亦进一日;或有交,亏初于日入前者,不进之。定弦望小余,在日出分以下者,退一日;或有交,亏初于日出前者,小余虽在日出后,亦退之。如望在十七日者,又视定朔小余在四分之三以下之数,(春分后用减定之数。)与定望小余在日出分以上之数相校之,朔少望多者,望不退,而朔犹进之;望少朔多者,朔不进,而望犹退之。(日月之行,有盈缩迟疾;加减之数,或有四大三小。若循常当察加时早晚,随所近而进退之,使不过四大三小。)
求定朔弦望中积
置定朔弦望小余,与中朔弦望小余相减之,余以加减经朔弦望入气日余,(中朔弦望,少即加之,多即减之。)即为定朔弦望入气;以加其气中积,即为定朔弦望中积。(其余,以日法退除为分秒。)
求定朔弦望加时日度
置定朔弦望约余,以所入气日损益率乘之,(盈缩之损益。)万约之,以损益其下盈缩积,乃盈加缩减定朔弦望中积,又以冬至加时日躔黄道宿度加之,依宿次去之,即得定朔弦望加时日所在度分秒。
又法:置定朔弦望约余,副之,以乘其日盈缩之损益率,万约之,应益者盈加缩减,应损者盈减缩加,其副满百为分,分满百为度,以加其日夜半日度,命之,各得其日加时日躔黄道宿次。(若先于历中注定每日夜半日度,即用此法为准也。)
求定朔弦望加时月度
凡合朔加时日月同度,其定朔加时黄道日度即为定朔加时黄道月度;弦望,各以弦望度加定朔弦望加时黄道日度,依宿次去之,即得定朔弦望加时黄道月度及分秒。
求夜半午中入转
置中朔入转,以中朔小余减之,为中朔夜半入转。又中朔小余,与半法相减之,余以加减中朔加时入转,(中朔少如半法,加之;多如半法,减之。)为中朔午中入转。若定朔大余有进退者,亦加减转日,否则因中为定,每日累加一日,满转终日及余秒,去命如前,各得每日夜半午中入转。(求夜半,因定朔夜半入转累加之;求午中,因定朔午中入转累加之;求加时入转者,如求加时入气之术法。)
求加时及夜半月度
置其日入转算外转定分,以定朔弦望小余乘之,如日法而一,为加时转分;(分满百为度。)减定朔弦望加时月度,为夜半月度。以相次转定分累加之,即得每日夜半月度。(或朔至弦望,或至后朔,皆可累加之。然近则差少,远则差多。置所求前后夜半相距月度为行度,计其日相距入转积度,与行度相减,余以相距日数除之,为日差行度。多日差加每日转定分行度,少日差减每日转定分而用之可也。欲求速,即用此数。欲究其微,而可用后术。)
求晨昏月度
置其日晨分,乘其日算外转定分,日法而一,为晨转分;用减转定分,余为昏转分。又以朔望定小余,乘转定分,日法而一,为加时分,以减晨昏转分,为前;不足,覆减之,为后;乃前加后减加时月度,即晨昏月度所在宿度及分秒。
求朔弦望晨昏定程
各以其朔昏定月减上弦昏定月,余为朔后昏定程。以上弦昏定月,减望昏定月,余为上弦后昏定程。以望晨定月,减下弦晨定月,余为望后晨定程。以下弦晨定月,减后朔晨定月,余为下弦后晨定程。
求每日转定度
累计每定程相距日下转积度,与晨昏定程相减,余以相距日数除之,为日差;(定程多,加之;定程少,减之。)以加减每日转定分,为转定度;因朔弦望晨昏月,每日累加之,满宿次去之,为每日晨昏月度及分秒。(凡注历,朔日已后注昏月,望后一日注晨月。)古历有九道月度,其数虽繁,亦难削去,具其术。
求正交日辰
置交终日及余秒,以其月经朔加时入交泛日及余秒减之,余为平交入其月经朔加时后日算及余秒;(中朔同。)以加其月中朔大小余,其大余命壬戌算外,即得平交日辰及余秒。(求次交者,以交终日及余秒加之,如大余满纪法,去之,命如前,即得次平交日辰及余秒也。)
求平交入转朓朒定数
置平交小余,加其日夜半入转,余以乘其日损益率,日法而一,所得,以损益其日下朓朒积,为定数。
求平交日辰
置平交小余,以平交入转朓朒定数朓减朒加之,满与不足,进退日辰,即得正交日辰及余秒;与定朔日辰相距,即得所在月日。
求中朔加时中积
各以其月中朔加时入气日及余,加其气中积及余,其日命为度,其余,以日法退除为分秒,即其月中朔加时中积度及分秒。
求正交加时黄道月度
置平交入中朔加时后日算及余秒,以日法通日内余进二位,如三万九千一百二十一为度,不满,退除为分秒,以加其月中朔加时中积,然后以冬至加时黄道日度加而命之,即得其月正交加时月离黄道宿度及分秒。如求次交者,以交中度及分秒加而命之,即得所求。
求黄道宿积度
置正交加时黄道宿全度,以正交加时月离黄道宿度及分秒减之,余为距后度及分秒;以黄道宿度累加之,即各得正交后黄道宿积度及分秒。
求黄道宿积度入初末限
置黄道宿积度及分秒,满交象度及分秒去之,余在半交象以下为初限;以上者,减交象度,余为末限。(入交积度、交象度,并在交会篇中。)
求月行九道宿度
凡月行所交,冬入阴历,夏入阳历,月行青道;(冬至夏至后,青道半交在春分之宿,当黄道东;立冬立夏后,青道半交在立春之宿,当黄道东南;至所冲之宿,亦皆如之也。宜细推。)冬入阳历,夏入阴历,月行白道;(冬至夏至后,白道半交在秋分之宿,当黄道西;立冬立夏后,白道半交在立秋之宿,当黄道西北;至所冲之宿,亦如之也。)春入阳历,秋入阴历,月行朱道;(春分秋分后,朱道半交在夏至之宿,当黄道南;立春立秋后,朱道半交在立夏之宿,当黄道西南;至所冲之宿,亦如之也。)春入阴历,秋入阳历,月行黑道。(春分秋分后,黑道半交在冬至之宿,当黄道北;立春立秋后,黑道半交在立冬之宿,当黄道东北;至所冲之宿,亦如之也。)四时离为八节,至阴阳之所交,皆与黄道相会,故月行有九道。各以所入初入初末限度及分,减一百一度,余以所入初入初末限度及分乘之,半而退位为分,分满百为度,命为月道与黄道泛差。
凡日以赤道内为阴,外为阳;月以黄道内为阴,外为阳。故月行正交,入夏至后宿度内为同名,入冬至后宿度内为异名。其在同名者,置月行与黄道泛差,九因之,八约之,为定差;半交后,正交前,以差减;正交后,半交前,以差加;(此加减出入六度,正如黄赤道相交同名之差,若较之渐异,则随交所在迁变不常。)仍以正交度距秋分度数,乘定差,如象限而一,所得,为月道与赤道定差;前加者为减,减者为加。其在异名者,置月行与黄道泛差,七因之,八约之,为定差;半交后,正交前,以差加;正交后,半交前,以差减;(此加减出入六度,正如黄赤道相交异名之差,若较之渐同,则随交所在迁变不常。)仍以正交度距春分度数,乘定差,如象限而一,所得,为月道与赤道定差;前加者为减,减者为加,各加减黄道宿积度,为九道宿积度;以前宿九道积度减之,为其宿九道度及分秒。(其分就近约为太、半、少,论春夏秋冬,以四时日所在宿度为正。)
求正交加时月离九道宿度
以正交加时黄道日度及分,减一百一度,余以正交度及分乘之,半而退位为分,分满百为度,命为月道与黄道泛差。其在同名者,置月行与黄道泛差,九因之,八约之,为定差,以加;仍以正交度距秋分度数乘定差,如象限而一,所得,为月道与赤道定差,以减。其异名者,置月行与黄道泛差,七因之,八约之,为定差,以减;仍以正交度距春分度数,乘定差,如象限而一,所得,为月道与赤道定差,以加。置正交加时黄道月度及分,以二差加减之,即为正交加时月离九道宿度及分。
求定朔弦望加时月所在度
置定朔加时日躔黄道宿次,凡合朔加时,月行潜在日下,与太阳同度,是为加时月离宿次;各以弦望度及分秒,加其所当弦望加时日躔黄道宿度,满宿次,去之,命如前,各得定朔弦望加时月所在黄道宿度及分秒。
求定朔弦望加时九道月度
各以定朔弦望加时月离黄道宿度及分秒,加前宿正交后黄道积度,为定朔弦望加时正交后黄道积度;如前求九道积度,以前宿九道积度减之,余为定朔弦望加时九道月离宿度及分秒。(其合朔加时,若非正交,则日在黄道,月在九道,所入宿度虽多少不同,考其两极若绳准。故云月行潜在日下,与太阳同度,即为加时。九道月度,求其晨昏夜半月度,并依前术。)
十五,为法;(夏至前后半限以上者,减去半限,列于上位,下置半限,各百通日内分,先相减,后相乘,以七千七百除之,所得以加其法。)及除上位为分,分满十为寸,寸满十为尺,用加夏至地中晷影常数,为所求晷影定数。
求四方所在晷影
各于其处测冬夏二至晷数,乃相减之,余为其处二至晷差;亦以地中二至晷数相减,为地中二至晷差。其所求日在冬至后初限、夏至后末限者,如在半限以下,倍之;半限以上,覆减全限,余亦倍之;并入限日,三因,折半,以日为分,十分为寸,以减地中二至晷差,为法;置地中冬至晷影常数,以所求日地中晷影定数减之,余以其处二至晷差乘之,为实;实如法而一,所得,以减其处冬至晷数,即得其处其日晷影定数。所求日在夏至后初限、冬至后末限者,如在半限以下,倍之;半限以上,覆减全限,余亦倍之;并入限日,三因,四除,以日为分,十分为寸,以加地中二至晷差,为法;置所求日地中晷影定数,以地中夏至晷影常数减之,余以其处二至晷差乘之,为实;实如法而一,所得,以加其处夏至晷数,即得其处其日晷影定数。
二十四气陟降及日出分
(以下表格略)
二分前后陟降率
春分前三日,太阳入赤道内,秋分后三日,太阳出赤道外,故其陟降与他日不伦,今各别立数而用之。
惊蛰,十二日陟四。(六十七、一十六。)此为末率,于此用毕。(其减差亦止于此也。)
十三日陟四。(四十一、六。)十四日陟四。(三十八、九十。)
十五日陟四。
秋分,初日降四。(三十八。)一日降四。(二十九。) 二日降四。(五十九)。三日降四。(六十八。)
此为初率,始用之。(其加差亦始于此也。)
求每日日出入晨昏半昼分
各以陟降初率,陟减降加其气初日日出分,为一日下日出分;以增损差(仍加减加减差。)增损陟降率,驯积而加减之,即为每日日出分;覆减日法,余为日入分;以日出分减日入分,半之,为半昼分;以昏明分减日出分,为晨分;加日入分,为昏分。
求日出入辰刻
置日出入分,以六因之,满辰法而一,为辰数;不尽,刻法除之,为刻,不满为分。命子正算外,即得所求。
求昼夜刻
置日出分,十二乘之,刻法而一,为刻,不满为分,即为夜刻;覆减一百,余为昼刻及分秒。
求更点率
置晨分,四因之,退位,为更率;二因更率,退位,为点率。
求更点所在辰刻
置更点率,以所求更点数因之,又六因之,内加更筹刻,满辰法而一,为辰数;不尽,满刻法,除之,为刻数;不满,为分;命其日辰刻算外,即得所求。
求四方所在漏刻
各于所在下水漏,以定其处冬至或夏至夜刻,乃与五十刻相减,余为至差刻。置所求日黄道去赤道内外度及分,以至差刻乘之,进一位,如二百三十九而一,为刻;不尽,以刻法乘之,退除为分;内减外加五十刻,即得所求日夜刻;以减百刻,余为昼刻。(其日出入辰刻及更点差率等,并依前术求之。)
求黄道内外度
置日出之分,如日法四分之一以上,去之,余为外分;如日法四分之一以下,覆减之,余为内分。置内外分,千乘之,如内外法而一,为度,不满,退除为分秒,即为黄道去赤道内外度;内减外加象限,即得黄道去极度。
求距中度及更差度
置半法,以晨分减之,余为距中分;百乘之,如周法而一,为距中度;用减一百八十三度一十二分八十三秒半,余四因,退位,为每更差度。
求昏明五更中星
置距中度,以其日午中赤道日度加而命之,即昏中星所格宿次,因为初更中星;以更差度累加之,满赤道宿次,去之,即得逐更及明中星。
步月离术
转终分,一十四万四千一百一十,秒六千二十,微六十。
转终日,二十七,余二千九百,秒六千二十,微六十。
转中日,一十三,余四千六十五,秒三千一十,微三十。
朔差日,一,余五千一百四,秒三千九百七十九,微四十。
象策,七,余二千一,秒二千五百。
秒母,一万。
微母,一百。
上弦度,九十一,分三十一,秒四十一(太)。
望度,一百八十二,分六十二,秒八十三半。
下弦度,二百七十三,分九十四,秒二十五(少)。
月平行度,十三,分三十六,秒八十七半。
分秒母,一百。
七日初数,四千六百四十八,末数,五百八十二。
十四日初数,四千六十五,末数,一千一百六十五。
二十一日初数,三千四百八十三,末数,一千七百四十七。
二十八日初数,二千九百一。
求经朔弦望入转(凡称秒者,微从之,他仿此。)
置天正朔积分,以转终分及秒去之,不尽,如日法而一,为日,不满为余秒,即天正十一月经朔入转日及余秒;以象策累加之,去命如前,得弦望经日加时入转及余秒;径求次朔入转,即以朔差加之。(加减里差,即得中朔弦望入转及余秒。)
(以下表格略)
求中朔弦望入转朓朒定数
置入转小余,以其日算外损益率乘之,如日法而一,所得,以损益朓朒积,为定数。其四七日下余,如初数以下,初率乘之,如初数而一,以损益朓朒积,为定数;如初数以上,以初数减之,余乘末率,如末数而一,用减初率,余如朓朒积,为定数。其十四日下余,如初数以上,以初数减之,余乘末率,如末数而一,为朓朒定数。
求朔弦望中日
以寻斯干城为准,置相去地里,以四千三百五十九乘之,退位,万约为分,曰里差;以加减经朔弦望小余,满与不足,进退大余,即中朔弦望日及余。(以东加之,以西减之。)
求朔弦望定日
置中朔弦望小余,朓减朒加入气入转朓朒定数,满与不足,进退大余,命壬戌算外,各得定朔弦望日辰及余。定朔干名与后朔同者,其月大;不同者,其月小;月内无中气者,为闰。视定朔小余,秋分后在日法四分之三以上者,进一日;春分后,定朔日出分与春分日出分相减之,余者,三约之,用减四分之三;定朔小余及此分以上者,亦进一日;或有交,亏初于日入前者,不进之。定弦望小余,在日出分以下者,退一日;或有交,亏初于日出前者,小余虽在日出后,亦退之。如望在十七日者,又视定朔小余在四分之三以下之数,(春分后用减定之数。)与定望小余在日出分以上之数相校之,朔少望多者,望不退,而朔犹进之;望少朔多者,朔不进,而望犹退之。(日月之行,有盈缩迟疾;加减之数,或有四大三小。若循常当察加时早晚,随所近而进退之,使不过四大三小。)
求定朔弦望中积
置定朔弦望小余,与中朔弦望小余相减之,余以加减经朔弦望入气日余,(中朔弦望,少即加之,多即减之。)即为定朔弦望入气;以加其气中积,即为定朔弦望中积。(其余,以日法退除为分秒。)
求定朔弦望加时日度
置定朔弦望约余,以所入气日损益率乘之,(盈缩之损益。)万约之,以损益其下盈缩积,乃盈加缩减定朔弦望中积,又以冬至加时日躔黄道宿度加之,依宿次去之,即得定朔弦望加时日所在度分秒。
又法:置定朔弦望约余,副之,以乘其日盈缩之损益率,万约之,应益者盈加缩减,应损者盈减缩加,其副满百为分,分满百为度,以加其日夜半日度,命之,各得其日加时日躔黄道宿次。(若先于历中注定每日夜半日度,即用此法为准也。)
求定朔弦望加时月度
凡合朔加时日月同度,其定朔加时黄道日度即为定朔加时黄道月度;弦望,各以弦望度加定朔弦望加时黄道日度,依宿次去之,即得定朔弦望加时黄道月度及分秒。
求夜半午中入转
置中朔入转,以中朔小余减之,为中朔夜半入转。又中朔小余,与半法相减之,余以加减中朔加时入转,(中朔少如半法,加之;多如半法,减之。)为中朔午中入转。若定朔大余有进退者,亦加减转日,否则因中为定,每日累加一日,满转终日及余秒,去命如前,各得每日夜半午中入转。(求夜半,因定朔夜半入转累加之;求午中,因定朔午中入转累加之;求加时入转者,如求加时入气之术法。)
求加时及夜半月度
置其日入转算外转定分,以定朔弦望小余乘之,如日法而一,为加时转分;(分满百为度。)减定朔弦望加时月度,为夜半月度。以相次转定分累加之,即得每日夜半月度。(或朔至弦望,或至后朔,皆可累加之。然近则差少,远则差多。置所求前后夜半相距月度为行度,计其日相距入转积度,与行度相减,余以相距日数除之,为日差行度。多日差加每日转定分行度,少日差减每日转定分而用之可也。欲求速,即用此数。欲究其微,而可用后术。)
求晨昏月度
置其日晨分,乘其日算外转定分,日法而一,为晨转分;用减转定分,余为昏转分。又以朔望定小余,乘转定分,日法而一,为加时分,以减晨昏转分,为前;不足,覆减之,为后;乃前加后减加时月度,即晨昏月度所在宿度及分秒。
求朔弦望晨昏定程
各以其朔昏定月减上弦昏定月,余为朔后昏定程。以上弦昏定月,减望昏定月,余为上弦后昏定程。以望晨定月,减下弦晨定月,余为望后晨定程。以下弦晨定月,减后朔晨定月,余为下弦后晨定程。
求每日转定度
累计每定程相距日下转积度,与晨昏定程相减,余以相距日数除之,为日差;(定程多,加之;定程少,减之。)以加减每日转定分,为转定度;因朔弦望晨昏月,每日累加之,满宿次去之,为每日晨昏月度及分秒。(凡注历,朔日已后注昏月,望后一日注晨月。)古历有九道月度,其数虽繁,亦难削去,具其术。
求正交日辰
置交终日及余秒,以其月经朔加时入交泛日及余秒减之,余为平交入其月经朔加时后日算及余秒;(中朔同。)以加其月中朔大小余,其大余命壬戌算外,即得平交日辰及余秒。(求次交者,以交终日及余秒加之,如大余满纪法,去之,命如前,即得次平交日辰及余秒也。)
求平交入转朓朒定数
置平交小余,加其日夜半入转,余以乘其日损益率,日法而一,所得,以损益其日下朓朒积,为定数。
求平交日辰
置平交小余,以平交入转朓朒定数朓减朒加之,满与不足,进退日辰,即得正交日辰及余秒;与定朔日辰相距,即得所在月日。
求中朔加时中积
各以其月中朔加时入气日及余,加其气中积及余,其日命为度,其余,以日法退除为分秒,即其月中朔加时中积度及分秒。
求正交加时黄道月度
置平交入中朔加时后日算及余秒,以日法通日内余进二位,如三万九千一百二十一为度,不满,退除为分秒,以加其月中朔加时中积,然后以冬至加时黄道日度加而命之,即得其月正交加时月离黄道宿度及分秒。如求次交者,以交中度及分秒加而命之,即得所求。
求黄道宿积度
置正交加时黄道宿全度,以正交加时月离黄道宿度及分秒减之,余为距后度及分秒;以黄道宿度累加之,即各得正交后黄道宿积度及分秒。
求黄道宿积度入初末限
置黄道宿积度及分秒,满交象度及分秒去之,余在半交象以下为初限;以上者,减交象度,余为末限。(入交积度、交象度,并在交会篇中。)
求月行九道宿度
凡月行所交,冬入阴历,夏入阳历,月行青道;(冬至夏至后,青道半交在春分之宿,当黄道东;立冬立夏后,青道半交在立春之宿,当黄道东南;至所冲之宿,亦皆如之也。宜细推。)冬入阳历,夏入阴历,月行白道;(冬至夏至后,白道半交在秋分之宿,当黄道西;立冬立夏后,白道半交在立秋之宿,当黄道西北;至所冲之宿,亦如之也。)春入阳历,秋入阴历,月行朱道;(春分秋分后,朱道半交在夏至之宿,当黄道南;立春立秋后,朱道半交在立夏之宿,当黄道西南;至所冲之宿,亦如之也。)春入阴历,秋入阳历,月行黑道。(春分秋分后,黑道半交在冬至之宿,当黄道北;立春立秋后,黑道半交在立冬之宿,当黄道东北;至所冲之宿,亦如之也。)四时离为八节,至阴阳之所交,皆与黄道相会,故月行有九道。各以所入初入初末限度及分,减一百一度,余以所入初入初末限度及分乘之,半而退位为分,分满百为度,命为月道与黄道泛差。
凡日以赤道内为阴,外为阳;月以黄道内为阴,外为阳。故月行正交,入夏至后宿度内为同名,入冬至后宿度内为异名。其在同名者,置月行与黄道泛差,九因之,八约之,为定差;半交后,正交前,以差减;正交后,半交前,以差加;(此加减出入六度,正如黄赤道相交同名之差,若较之渐异,则随交所在迁变不常。)仍以正交度距秋分度数,乘定差,如象限而一,所得,为月道与赤道定差;前加者为减,减者为加。其在异名者,置月行与黄道泛差,七因之,八约之,为定差;半交后,正交前,以差加;正交后,半交前,以差减;(此加减出入六度,正如黄赤道相交异名之差,若较之渐同,则随交所在迁变不常。)仍以正交度距春分度数,乘定差,如象限而一,所得,为月道与赤道定差;前加者为减,减者为加,各加减黄道宿积度,为九道宿积度;以前宿九道积度减之,为其宿九道度及分秒。(其分就近约为太、半、少,论春夏秋冬,以四时日所在宿度为正。)
求正交加时月离九道宿度
以正交加时黄道日度及分,减一百一度,余以正交度及分乘之,半而退位为分,分满百为度,命为月道与黄道泛差。其在同名者,置月行与黄道泛差,九因之,八约之,为定差,以加;仍以正交度距秋分度数乘定差,如象限而一,所得,为月道与赤道定差,以减。其异名者,置月行与黄道泛差,七因之,八约之,为定差,以减;仍以正交度距春分度数,乘定差,如象限而一,所得,为月道与赤道定差,以加。置正交加时黄道月度及分,以二差加减之,即为正交加时月离九道宿度及分。
求定朔弦望加时月所在度
置定朔加时日躔黄道宿次,凡合朔加时,月行潜在日下,与太阳同度,是为加时月离宿次;各以弦望度及分秒,加其所当弦望加时日躔黄道宿度,满宿次,去之,命如前,各得定朔弦望加时月所在黄道宿度及分秒。
求定朔弦望加时九道月度
各以定朔弦望加时月离黄道宿度及分秒,加前宿正交后黄道积度,为定朔弦望加时正交后黄道积度;如前求九道积度,以前宿九道积度减之,余为定朔弦望加时九道月离宿度及分秒。(其合朔加时,若非正交,则日在黄道,月在九道,所入宿度虽多少不同,考其两极若绳准。故云月行潜在日下,与太阳同度,即为加时。九道月度,求其晨昏夜半月度,并依前术。)